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Scope & Topics 

 

SWIM aims at gathering researchers working on/with interval methods and their 

applications. The goal is to review the state-of-the-art in this field. Contributions 

can be for example in the domain of  

 

• Verification and Validation 

• Robust and Nonlinear Control Systems 

• State Estimation 

• Interval Observer Design 

• Parameter Identification 

• Fault Detection and Diagnosis, Fault Tolerant Systems 

• Stability, Reachability, Observability 

• Reliable Software Design 

• Robotics 

• Mathematics 

• Verified Solution of Algebraic and Dynamic System Models 

• Verified Numerics and Scientific Computing 

• Linear Algebra 

• and any other applications of interval methods, verified numerics, and 

other related set-membership techniques (e.g.: affine arithmetics, 

polytopes, etc.) 

  



 

Previous Editions of SWIM 

 

The SWIM workshop series was initiated by the French MEA working group on 

Set Computation and Interval Techniques of the French research group on 

Automatic Control GDR MACS, where the MEA group especially aimed at 

promoting interval analysis techniques and applications to a broader community 

of researchers. Since 2008, SWIM has become an annual keystone event for 

researchers dealing with various aspects of interval and set-membership 

methods.   

 

Previous editions of SWIM were held in: 

 

• Paris, France in 2019 

• Rostock, Germany in 2018 

• Manchester, UK in 2017 

• Lyon, France in 2016  

• Prague, Czech Republic in 2015 

• Uppsala, Sweden in 2014 

• Brest, France in 2013 

• Oldenburg, Germany in 2012 

• Bourges, France in 2011 

• Nantes, France in 2010 

• Lausanne, France in 2009 

• Montpellier, France in 2008 
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Testing interval arithmetic libraries: why

Interval arithmetic is used to get guarantees on numerical results. In-
deed, it provides an anclosure of the sought result. However, the user
must trust the library implementing interval arithmetic that is em-
ployed to solve the given problem. What guarantees that this library
is correct? Formal proof is a desirable approach, and in particular it is
available within the CoqInterval library [1]. Another, complementary,
approach consists in testing the library: it covers aspects that are usu-
ally not covered by formal proof, such as the specifics of the language,
compiler (with the notable exception of CompCert [2]) or hardware.

Unit tests

In what follows, only unit tests will be considered, and tests that are
complete applications will not be discussed, see [3] for a first step in
this direction. Unit tests target only one function of the library at
a time; typically, they consist of a list of test cases, that is, of input
values along with the expected output values: one checks whether the



function returns the expected output values for each input arguments.
If this is the case, the function passes the test.

Testing interval arithmetic libraries: how

The goal of this talk is to discuss the different aspects that unit tests
should cover, and how to devise corresponding test cases, with a spe-
cific focus on compliance with the IEEE 1788-2015 standard for interval
arithmetic [4]. The ultimate goal would be to create a collection of test
cases for each function required or recommended by this standard, and
to share them. We emphasize that this collection should be easy to
use for libraries written in different programming languages, such as
MPFI [5] written in C, libieee1788 [6] written in C++, JInterval [7]
written in Java, Intlab [8] available in MatLab, Octave/interval [9]
written in Octave or JuliaIntervals/IntervalArithmetic.jl [10] written
in Julia. We will survey two approaches in this direction, namely JIn-
terval [11] and ITF-1788 [12], and discuss their limitations. An even
more desirable goal would be to design a generator of test cases, we
will discuss this point as well.
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Introduction

Codac (Catalog Of Domains And Contractors) is a C++/Python li-
brary providing interval tools for constraint programming over reals,
trajectories and sets. In the field of robotics, complex problems such
as non-linear state estimation, parameter estimation, delays, or SLAM
can be solved in a very few steps by using constraint programming.
Even though the Codac library is not meant to target only robotic
problems, the design of its interface has been largely influenced by the
needs of the above class of applications. Codac provides solutions to
deal with these problems, that are usually hardly solvable by conven-
tional methods such as particle approaches or Kalman filters.

A framework of domains and contractors

Codac extends the tools proposed in the IBEX library to a wider class
of problems. A catalog of domains such as intervals [x], boxes [x],
tubes [x](t) (intervals of trajectories), thicksets [X] (intervals of sets) is
available in Codac. These sets are contractible by contractor operators
that aim at narrowing their bounds in a reliable way, according to
several constraints defining a problem. The provided contractors are
associated with publications from the literature and allow to deal with,
for instance, non-linear constraints f(x) = 0, inequalities, geometric
constraints (distance, polar equation, circles), continuous differential



Figure 1: Guaranteed computation of a tube enclosing the feasible
trajectories of a robot measuring bounded distances from three land-
marks, without prior knowledge about its initial position.

equations: ẋ = f(x), ẋ = Ax + Bu, time uncertainties: y = x(t) with
t ∈ [t], delays: x(t) = y(t− τ) [2], etc.

Domains and contractors can be combined in a Contractor Network
that will manage the propagation of the contractions and ease the im-
plementation of the related interval solver. In a few steps, we first:
(1) define the initial domains (boxes, tubes) of our variables (vectors,
trajectories) ; (2) take contractors from a catalog of already existing
operators, provided in the library ; (3) add the contractors and do-
mains to a Contractor Network ; (4) let the Contractor Network solve
the problem ; (5) obtain a reliable set of feasible variables. The presen-
tation will provide a simple application of Codac on a robotic problem.
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Introduction

If we want to characterize an inner and an outer approximation of

S = {(x, y) | y −
√

2x− x ≥ 0}

a classical set inversion algorithm [1], yields the left figure, where as
we would like to obtain the right figure



The outer contractor works well, but the inner contractor is over-
contracting. Note that, the multi-occurence of x in the expression√

2x− x, allows the inner contractor to show its weakness. This type
of problems occurs several times in our real applications when dealing
with functions such as log,

√
· that are not defined everywhere. We

want to identify the reasons of the problem and find a way to fix it.

New type of interval

Consider the extended set of reals R̊ = R ∪ ι where ι stands for Not
A Number [2]. Operations on real numbers can be extended to R̊ as
follows:

f(x) = ι if x /∈ dom(f)
f(ι) = ι
ι � x = ι

where f : R→ R, x ∈ R and � is a binary operator. The set R̊ can be
equipped with a partial order relation derived from rules:

ι ≤ ι
a ∈ R, b ∈ R then a ≤R̊ b iff a ≤R b

and intervals can be derived from these relations. Examples of intervals
of R̊ are [2, 5], [2, 5] ∪ {ι}, {ι}, ∅. In the extended paper, we show that
this new type of intervals allows us to solve inequalities where functions
are not defined everywhere.
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Introduction

On Rn, we consider the differential inclusion problem defined as:

ẋ = f(x, u) where u ∈ [u] (1)

where f is differentiable and u can take any value in a box [u] at any
time. From a set of initial states (at t = 0), our goal is to get an
overapproximation of the possible states at time t.

Contribution

On [0, t], we can express f as:

f(x, u) = C + A(x− xm) + φ(x, t) (2)

where C is an vector of intervals, A is a matrix of intervals and φ(x, t) ∈
[Φ] where Φ is a zero-centered box.

In this case, if x(0) = x0, the solution of the differential equation
(for a given φ) is:

x(t) = xm+etA(x0−xm)+

∫ t

0

e(t−τ)AdτC+

∫ t

0

e(t−τ)Aφ(x(τ), τ)dτ (3)



(A) Pendulum with perturbation (B) Van der Pol oscillator

Figure 1: Solutions of two differential inclusion. (A) A pendulum with
uncertainties. (B) A Van der Pol oscillator. We represent sets as
intersections of parallepipeds.

Following previous works on exponentiation of interval matrices[1],

we compute precise and safe overapproximations of etA and
∫ t
0 e

(t−τ)Adτ
using Taylor developments as well as scaling and squaring techniques.

We show that bounding
∫ t
0 e

(t−τ)Aφ(x(τ), τ)dτ can be done by bound-

ing I(A, t) =
∫ t
0 |e

τA|dτ (which |V | being the component-wise absolute
value of V ). This is done by computing [K] such that eτA ∈ Id + τ [K]
and bounding I(A, t) from the components of [K].

Fig 1 graphically shows the evolution of the solutions for a few
classical examples. We compared our approach with CAPD [2] on a
Van der Pol oscillator with a small perturbation:

(ẋ; ẏ) = (y + [−10−4, 10−4]; (1− x2) ∗ y − x+ [−10−4, 10−4])

Fig 2 gives the enclosing boxes for t = 1, for CAPD and our approach.
The precision depends heavily on the number of time steps, but these
results indicate the interest of our approach.



Initial state Our approach CAPD (CW method)
(2;0) [1.507982, 1.508306] [1.508005, 1.508283]

×[−0.780351,−0.780088] ×[−0.780311,−0.780126]
(2;3) [2.300337, 2.300655] [2.300371, 2.300625]

×[−0.479899,−0.479744] ×[−0.479863,−0.479778]

Figure 2: Comparaison of our approach and CAPD on a simple exam-
ple.
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Introduction

Networked Control Systems (NCSs) are spatially distributed systems
in which the controller and/or other elements are connected through a
network. They have been used in a wide variety of applications, due to
the lower cost of implementation and the growing trend in the Inter-
net of Things (IoT). Aperiodic measurements have been proven useful
to decrease the traffic in the network, mechanisms such as self/event-
triggered are the most used. On the other hand, the problem of fault
detection and isolation (FDI) is still an issue in this type of struc-
ture. Many techniques have been applied for FDI. In general, these
are classified into active or passive techniques. In this work, we pro-
pose a framework to zonotope state estimation in an NCS subject to
the event-triggered mechanism for robust FDI. The framework takes
measurements from the past to improve the reduction of the feasi-
ble set, ergo, FDI. The framework is tested over a well-known FDI
method over a double spring-mass system. The results show that the
framework improves FDI by 20% compared to the traditional method
without the framework.



General Structure

The principle of FDI using zonotope is simple. After performing the
reachability step on a standard zonotope state estimation, the output
measurement is taken to construct an output set that intersects with
the reachable set to reduce the final feasible set. However, if this inter-
section is empty, it will imply that a fault or an attack has occurred.
The framework adds virtual output sets in this intersection.
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Introduction

The charging/discharging dynamics of Lithium-ion batteries can be
approximated by using equivalent circuit models. According to [1]–[3],
these models consist of a finite number of RC sub-networks as well as
series resistances and a state of charge (SOC) dependent voltage source
(open-circuit voltage vOC(t)) as shown in Fig. 1.

+

Figure 1: Equivalent circuit model of a Lithium-ion battery (cf. [1]).

In this presentation, two RC sub-networks representing processes with
short (TTS) and large (TTL) time constants are considered, which result



from polarization effects and concentration losses as described in [1],
[2].

The SOC σ(t) and the voltages across the RC sub-networks vTS(t) and
vTL(t) are chosen as the state variables. With the state vector

x(t) =
[
σ(t) vTS(t) vTL(t)

]T
, (1)

the quasi-linear, continuous-time battery model is obtained as

ẋ(t) = A (σ(t)) · x(t) + b (σ(t)) · u(t)

=

0 0 0

0 −1
CTS(σ(t))·RTS(σ(t))

0

0 0 −1
CTL(σ(t))·RTL(σ(t))

 · x(t) +


−1
CBat
1

CTS(σ(t))
1

CTL(σ(t))

 · iT(t)

(2)

with the terminal current iT(t) as the system input.
By applying Kirchhoff’s voltage law, the terminal voltage is obtained
as

vT(t) = vOC(σ(t))− vTS(t)− vTL(t)− iT(t) ·RS (σ(t)) , (3)

where vOC(σ(t)) and RS (σ(t)) are represented by nonlinear expressions
of the SOC. For more details, see [1], [2].

In classical state estimation approaches, the parameters are identi-
fied experimentally (cf. [1]–[3]). But they are subject to aging- and
temperature-induced variations, which are shown in [2]. The aging of
battery cells leads to a loss of the total capacity, an increasing Ohmic
cell resistance and changes in the charging/discharging efficiency as
well as changes of the time constants. Additionally, there are other in-
fluence factors such as the cell temperature. The first-mentioned varia-
tions can be estimated with the help of an augmented state vector, but
this approach does not allow for estimating nonlinear dependencies of
the circuit elements on the SOC or other influence factors.
For the identification of the nonlinear dependency of the open-circuit
voltage on the SOC with underlying aging- and temperature-induced



variations, it is assumed that the parameters are known and not yet
affected by aging. The aging- and temperature-induced variations can
be mapped onto the open-circuit voltage.
This presentation proposes a two-stage identification for nonlinear de-
pendencies with the dependency of the open-circuit voltage on the
SOC as an example. The state variables of the dynamic system are
estimated in the first stage with an interval observer. In the second
stage, the a-priori knowledge is corrected using the estimated state
variables.

In this presentation the notations M and M for a matrix M denote
the element-wise lower and upper bounds.

With the bounding system x ∈ [x ; x] and x̂ ∈
[
x̂ ; x̂

]
, x is given as

x ∈
[
x̂ ; x̂

]
and the interval observer is obtained according to ([3], [4])

AOx̂+Bu+Hy
m
≤ ˙̂x ≤ AOx̂+Bu+Hym (4)

with the observer system matrices

AO = A−HC and AO = A−HC (5)

and the uncertain measurements

[ym] :=
[
y
m
; ym

]
= ym + [−∆ym ; ∆ym] . (6)

Here, the system matrix A (σ(t)) has the following sign pattern

A (σ(t)) =

 ≤ 0 ≥ 0 ≥ 0
≥ 0 ≤ 0 ≥ 0
≥ 0 ≥ 0 ≤ 0

 ∈
[
A ; A

]
. (7)

The output equation is given as

y(t) = ṽT(t) =
[
ṽOC(t)− vTS(t)− vTL(t)− iT(t) ·RS(t)

]
(8)



with the associated quasi-linear representation

y∗(t) = y(t)−D (σ(t)) · iT(t) = C (σ(t)) · x(t)
=

[
ηOC (σ(t)) −1 −1

]
· x(t) ∈ [ym] ;

(9)

ṽOC(t) is obtained by subtracting the constant, state independent terms
from the expression for the open-circuit voltage vOC(t) to turn this ex-
pression into a quasi-linear form, see [1].

Based on the design of a robust interval observer shown in [3], the
observer matrix H is hereby assigned as

H =
[
h1 0 0

]T
, h1 > 0 . (10)

With the help of interval methods, the nonlinear dependency of the
open-circuit voltage on the SOC is identified as shown in Fig. 2.

1 3.2999997749 -2
0.9 2.7549988852 -16
0.8 2.3119944785 1
0.7 1.9589726516 0.6
0.6 1.6838645425 -0.3
0.5 1.4743290747 2
0.4 1.3166768855
0.3 1.1905405059
0.2 1.042475592
0.1 0.655206964
0 -1

Figure 2: Identification of nonlinear dependencies using interval meth-
ods.
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SE, 2022, accepted.

[2] O. Erdinc, B. Vural and M. Uzunoglu, A Dynamic Lithium-
Ion Battery Model Considering the Effects of Temperature and
Capacity Fading, Proc. of International Conference on Clean Elec-
trical Power, 383–386, 2009.

[3] E. Hildebrandt, J. Kersten, A. Rauh and H. Aschemann,
Robust Interval Observer Design for Fractional-Order Models with
Applications to State Estimation of Batteries, IFAC-PapersOnLine
(vol. 53) 2, 3683-3688, 2020.
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Summary

A common verification problem in reliability analysis is establishing
the correctness of Monte Carlo methods. When the system is com-
plex and the failure event is rare, reducing the variance of the Monte
Carlo estimator can be a challenge. To combat this verification prob-
lem, we present an adaptation of the SIVIA algorithm (Set Inversion
Via Interval Analysis) that computes rigorous bounds on the failure
probability of rare events. With this method, the nonlinearity of the
system and the magnitude of the failure event no longer constitute a
limitation. The method is rigorous i.e. inclusive and outside-in, so
the more computational effort is invested the tighter the bounds. Be-
cause the engineering and the probability problem are separated, the
method opens exciting avenues towards computing rigorous imprecise
failure probability.

Set-inversion reliability

SIVIA (Set Inversion Via Interval Analysis) is a popular algorithm for
constraint back propagation [1,2]. In this section, we show how SIVIA
can be deployed to output a lower subtiling of the failure domain, i.e.
the domain where the failure measure is integrated. Rigorous integra-
tion of the lower subtiling of the failure domain leads to a lower bound



on the failure probability. SIVIA also outputs an outer subtiling of the
boundary of the failure domain, which failure measure corresponds to
the imprecision in the failure probability. The size of this outer subtil-
ing determines the accuracy of the calculation.

Rigorous integration of probability

Rigorous integration takes place knowing the probability distribution
exactly and evaluating the probability measure in each subbox of the
subtiling by means of the so called H-volume [3]. The total failure
probability is the sum of the measures of each sub-box.

Reproducibility

The code and algorithms used in this document are available at https:

//github.com/marcodeangelis/set-inversion-reliability. Interval computations
were run using intervals https://github.com/marcodeangelis/intervals a code
library for interval computing in Python.
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Abstract

An efficient analysis of our engineering structures and systems is a key
requirement for a most suitable design at the required level of relia-
bility. This requirement, however, is challenging engineers to come up
with innovative solutions that can cope with the increasing complexity
of our structures and their behaviour and with the uncertainties in-
volved. Imprecise probabilities have shown useful conceptual features
to facilitate a modelling at a reasonable level of detail and capturing
the remaining epistemic uncertainty in a set-valued manner. This ap-
proach allows for an optimal balance between model detailedness and
imprecision of results to still derive useful decisions. However, it is also
associated with some extensive numerical cost when applied in a crude
way. This presentation will highlight selected solutions for efficient
numerical analysis with imprecise probabilities, specifically for reli-
ability analysis, to attack high-dimensional and nonlinear problems.
After an introductory overview on conceptual pathways for solution
one intrusive and three non-intrusive specific developments will be dis-
cussed. These solutions include operator norm theory to solve first
passage problems by linear algebra, intervening variables to moderate
nonlinearities for linearized approximate solutions, and the utilization



of high dimensional model representation of the failure probability for
non-intrusive efficient sampling. Engineering examples are presented
to demonstrate the capabilities of the approaches and concepts.
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Introduction

Starting from a set of possible initial points, the solution of an ODE
can be represented by a reachable tube describing the evolution of the
system from this initial set. Abstract domains can be used to enclose
the tube: boxes (cartesian product of intervals), zonotopes, ellipsoids,
and nonconvex sets such as Taylor models (see [2] for a review of these
abstract domains). The more accurate an abstract domain is, i.e. the
smallest the difference between the hull of the abstraction and the
abstracted set is, the more accurate the enclosure of the reachable
tube will be. Polytope enclosure is a promising approach as it is more
precise than the interval or zonotope abstract domains, but suffers
from the expensiveness of its geometrical computation. Considering a
polytope as an intersection of zonotopes and therefore benefiting from
affine arithmetic is a possible solution to overcome the limitations (e.g.
zonotope bundles [3], i.e., a set of zonotopes is used and therefore the
intersection is not computed; or the intersection is computed when
necessary [1]).



Reachable tubes as abstract trees

Considering a tube, a disjunction of predicates, T = (t1 ∧ e1) ∨ (t2 ∧
e2) · · · ∨ (tn ∧ en) where each ei represents the set of values of solution
functions within time frame ti, it is to be understood as the following
property: the solution is either in set e1 during the time frame t1, or in
set e2 during the time frame t2, etc. Considering initial values given as
a polytope P , we decompose P as the intersection of s zonotopes Zi.
The reachable tube of the corresponding ODE is therefore described
by the conjunction of s tubes T 1 ∧ · · · ∧ T i ∧ · · · ∧ T s, each tube T i

being obtained by the zonotopic simulation with initial value taken in
Zi. This conjunction of disjunctions can be efficiently solved with con-
straint programming and polytopes as abstract domains. For obstacle
avoidance or collision detection, a predicate (or several ones) of the
form “and not in” is added to the previous formula.
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Introduction

Interval analysis relies on a catalog of basic constraints such as

(i) x1 + x2 = x3
(ii) x1 · x2 = x3
(iii) x2 = x21
(iv) x2 = sin(x1)

(v)

(
x1
x2

)
=

(
x3 x4
x5 x6

)
·
(

x7
x8

)
(vi)

(
x1
x2

)
=

(
x3 · cos(x4)
x3 · sin(x4)

)
(1)

For each of these constraints, we have to build minimal contractors.
To solve a problem defined by nonlinear constraints [1], an interval
solver decomposes it into constraints that are inside the catalog. Then,
it calls the associated contractors until no more contractions can be
observed.



Minimal contractors

Denote by IRn the set of boxes of Rn. A minimal contractor C∗ for
a constraint can be defined as an operator from IRn to IRn such that
C∗([x]) corresponds to the smallest box which can be obtained by a
contraction of [x] without removing a single point of the constraint.
Now, many constraints such as those in (1) can be generated by apply-
ing specific symmetries (translation, hyperoctahedral, scaling, . . . ) [2]
to a monotonic constraint. This will allow us to build efficient optimal
contractors for a large class of constraints. The principle is illustrated
by the figure below for the constraint (iv) where (a) represents the
generator, (b) the action of the axial symmetry D and (c) the action
of the translation symmetry v.

In the presentation we will consider much complex constraints re-
lated to localization problems.
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Introduction

When dealing with mobile robots, localisation is one of the main problems
one will be required to solve. One may use complex and expensive devices
to localise the vehicle. However, with the development of swarms of robots,
the need for cheaper units requires finding alternatives to these expensive
devices. Here we will use the dynamical model of the system studied.

Guaranteed integration using Lie symmetries

In [1] and [2], we presented a method to perform guaranteed integration
for large initial conditions. We recall the principle quickly here. Provided
we have a reference trajectory (ϕx1

0
(t), black arrow in Fig. 1) computed for

an initial condition x1
0 (the bottom left black car), it is possible, using Lie

symmetries of the system (if they are known) to find the solution (top right
green car) for another initial condition (bottom right green car).

Combining interval analysis tools to solve the localisa-
tion problem

Consider a robot with a known dynamical model and an unknown initial
state. We want to localise it, using range-only measurements to beacons for
which we know the exact location as it progresses throughout the mission.
Applying both our integration method and contractors related to range mea-
surements on tubes [3] used to enclose the robot trajectory, it is possible to
estimate the initial condition of the robot with backward constraint prop-
agation. Then, propagating the constraints in a forward manner, one can



estimate the trajectory of the robot. This is illustrated in a video which can
be found on youtube1.
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Introduction

State estimation in a dynamic system subject to uncertain state obser-
vation, where uncertainties can be both aleatoric due to noisy measure-
ments and epistemic due to partial observation, is a classical problem.
Optimal state estimation algorithms [6] can provide as precise as pos-
sible verdicts on state conditions, answering questions like whether the
current position of a drone violates a geo-fencing condition. Many
interesting safety properties of interacting cyber-physical agents are,
however, more complex than state conditions, calling for specification
as a durational property in an adequate temporal logic [5, 4]. This pro-
vokes the quest for optimal, in the sense of as precise as possible, mon-
itoring algorithms evaluating properties expressed in temporal logic
based on noisy and incomplete, i.e. uncertain sensory information.

1joint work with Bernd Finkbeiner (CISPA Helmholtz Center for Information Security;
Stuhlsatzenhaus 5, 66123 Saarbrücken, Germany), Florian Kohn (CISPA Helmholtz Center for
Information Security), and Paul Kröger (Carl von Ossietzky Universität Oldenburg, Foundations
and Applications of Systems of Cyber-Physical Systems,)



Results

In this talk, we will demonstrate that contrary to common belief, op-
timal monitoring under uncertainty cannot be achieved by first apply-
ing optimal state estimation and then evaluating the temporal logic
property in question upon this sequence of as precise as possible state
estimates. Based on the indicative example of Signal Temporal Logic
(STL) [4], a linear-time temporal logic specifically designed for classi-
fying the time-dependent signals originating from continuous-state or
hybrid-state dynamical systems according to formal specifications, we
demonstrate that more precise statements can be computed based on
affine-arithmetic encodings of STL semantics. For this, we first de-
fine the pertinent notion of precision, namely that verdicts provided
by a monitor ought be sound (yield ‘true’ or ‘false’ only if all ground-
truth trajectories consistent with the uncertain measurements satisfy,
or violate, resp., the property of interest ) and informative (monitoring
yields ‘inconclusive’ only if some ground-truth trajectories consistent
with the uncertain measurements satisfy and other consistent ones vi-
olate the property of interest).

In a setting where measurements are subject to both an interval-
bounded per-sample error and an unknown, yet fixed offset, sequen-
tial execution of optimal state estimation and STL evaluation yields
a sound, yet not an informative monitoring algorithm. That means
that this combination sometimes fails to provide conclusive verdicts
though these would be adequate. For the model-free as well as for the
linear model-based case of dynamic system monitoring, we then pro-
vide precise, i.e. sound and informative, evaluation algorithms based on
affine arithmetic [2] and SAT modulo theory solving over linear arith-
metic [7, 1]. We prove preciseness of these algorithms in the cases of
interval-bounded measurement noise and, when a linear system model
is provided, partial observation.

For full constructions and proofs, we refer the reader to [3].
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Introduction

Differential inclusions are nondeterministic continuous-times systems
with set-valued uncertainties ẋ(t) ∈ F (x(t)).A solution is an absolutely-
continuous function satisfying the equation almost-everywhere. They
arise from noisy systems ẋ(t) = f(x(t), v(t)) with v(t) ∈ V . We give a
method for computing solution sets for systems with affine noise:

ẋ(t) = f(x(t)) +
∑m

i=1gi(x(t)) vi(t); vi(t) ∈ [−Vi,+Vi]; x(t0) = x0.

Method

To over-approximate the set of solutions, we consider an auxiliary sys-
tem of ordinary differential equations

ẏ(t) = f(y(t), w(t; a)), y(0) = x0, w(·; a) ∈ W, a ∈ A

where A is a finite-dimensional compact set of parameters, and ana-
lytically determine a uniform error bound on the difference between
solutions of the original system and its auxiliary counterpart.



We take constants Λ ≥ λ(Df(·)),, the logarithmic norm, and

‖f(z(t))‖ ≤ K, ‖gi(z(t))‖ ≤ Ki K ′ =
∑m

i=1ViKi,

‖Df(z(t))‖ ≤ L, ‖Dgi(z(t))‖ ≤ Li, L′ =
∑m

i=1Vi Li.

Then if f and g are C1 and the wi are measurable functions such that∫ h

0 vi(τ)− wi(τ) dτ = 0, the single-time-step error is

|x(h)− y(h)| ≤ h2
(
(K +K ′)L′/3 + 2K ′(L+ L′) (eΛh − 1)/Λh

)
(1)

By using two-parameter piecewise-constant or affine functions for each
component wj(·), we can obtain an error with terms of order O(h2)
and O(h3), and full order of O(h3) is obtained in the cases of additive
inputs ẋ = f(x) + v and the one-input case.

The auxiliary system is solved using rigorous integration using poly-
nomial models. The method has been implemented in the tool Ari-
adne, and performed competitively on the ARCH benchmarks [3].
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Introduction

The incompressible stationary 2D Navier-Stokes equations

−∆v + Re [(v · ∇)v +∇q]

div v

= f

= 0

}
in Ω

v = 0 on ∂Ω

are considered on an unbounded strip domain Ω ⊆ R2 perturbed by
a compact obstacle D, i.e., Ω = R × (0, 1) \D. Here, Re denotes the
Reynolds number and f models external forces acting on the fluid.

With U denoting the Poiseuille flow and P its associated pressure
we are interested in solutions of the form v = U + ū where ū(x, y)→ 0
as |x| → ∞ and q = P + p.

Since such functions ū do not satisfy the Dirichlet boundary condi-
tions anymore we perform a second transformation using a solenoidal
vector field V with

V = 0 on ∂Ω \ ∂D, V = U on ∂Ω ∩ ∂D and V (x, y)→ 0 (|x| → ∞)



which finally leads to the transformed Navier-Stokes equations

−∆u + Re [(u · ∇)u + (u · ∇)Γ + (Γ · ∇)u +∇p]

div u

= g

= 0

}
in Ω

u = 0 on ∂Ω

with Γ := U − V and the right-hand side g := f −∆V −Re(Γ · ∇)Γ.
Modeling the divergence free condition in the solution space

H(Ω) := {u ∈ H1
0(Ω,R2) : div u = 0} we can eliminate the pressure

from the first equation which leads to the following weak formulation:

Find velocity u ∈ H(Ω) such that∫
Ω

(∇u · ∇ϕ + Re [(u · ∇)u + (u · ∇)Γ + (Γ · ∇)u] · ϕ) d(x, y)

=

∫
Ω

g · ϕd(x, y) (ϕ ∈ H(Ω)).

Main results

Applying computer-assisted techniques to this problem, we are able
to prove existence of a (non-trivial) solution u∗ ∈ H(Ω) to the weak
formulation (with f ≡ 0) for different Reynolds numbers and several
domains Ω.

Starting from an approximate solution (computed with divergence-
free finite elements), we determine a bound for its defect, and a norm
bound for the inverse of the linearization at the approximate solution.
For the latter, bounds for the essential spectrum and for eigenvalues
play a crucial role, especially for the eigenvalues “close to” zero.

With these data at hand, we can use a fixed-point argument to
obtain the existence of a solution “nearby“ the approximate one as
well as an error bound (in the Sobolev space H(Ω)).

Finally, if our computer-assisted proof provides the existence of
a solution u∗ to the weak formulation for the velocity we addition-
ally prove existence of a corresponding pressure p∗ such that the pair
(u∗, p∗) is a weak solution to the transformed Navier-Stokes equations.



Uses of Methods with Result Verification
in the Context of MIMO Systems

Ekaterina Auer1 and Andreas Ahrens1

1 Department of Electrical Engineering
University of Applied Sciences Wismar, D-23966 Wismar, Germany

ekaterina.auer@hs-wismar.de

Keywords: MIMO, interval analysis, optimization, BER, SVD, GMD

Technical simulations that take into account the underlying uncertain-
ties have become indispensable in modern engineering. One possibility
to deal with bounded uncertainty, for example, in parameters, is to
employ methods with result verification such as interval analysis. In
this way, it is possible not only to propagate such uncertainty through
systems in a forward, deterministic manner, but also to verify that the
result obtained using a computer definitely contains the true result of
a simulation. In this contribution, we propose to use interval analysis
to increase the reliability and to account for uncertainty in the context
of the multiple-input multiple-output (MIMO) systems.

Placing multiple antennas at the transmitter and receiver sides has
been shown to improve both the capacity and the integrity of a com-
munication link. To model a frequency flat MIMO link consisting of nT

transmitting and nR receiving antennas, a linear stochastic model [1]

~y = H · ~a+ ~n, ~y, ~n ∈ CnR, ~a ∈ CnT, H ∈ CnR×nT , (1)

is widely employed. Here, ~y is the received data vector, ~a is the trans-
mitted signal vector, ~n is the vector of the additive white Gaussian
noise at the receiver side with the zero mean and the variance σ2 in
both real and imaginary parts, and H is the channel matrix. In prac-
tice, working with this model can be roughly divided into the steps
shown in Figure 1.



System
configuration

nT, nR antennas
other hardware

Channel
modeling/estimation

H ∈ CnR×nT

Interference
suppression

e.g., SVD

Power
allocation

e.g., Lagrange
optimization

InformationInformation
Quality crite-
ria: e.g., BER

Figure 1: Modeling, simulation and optimization of a MIMO link

This entire process is influenced by several uncertain factors. For
example, the matrix H is not known exactly (e.g., due to quantization
errors or time variations of the channel). This can lead to faulty chan-
nel separation and subsequent failure to eliminate inter-antenna in-
terference. Additionally, measurement errors or unknown noise power
might complicate the optimization step.

In this contribution, we focus on uses of interval analysis at the
stages of interference suppression and resource allocation. We show
how correlated and uncorrelated MIMO systems can be optimized wrt.
power if singular value decomposition (SVD) is employed at the stage
of interference suppression. As an outlook, we compare the SVD to
the so-called geometric mean decomposition (GMD), which can also be
used for channel separation, from the point of view of the achievable bit
error ratio (BER) and the influence of numerical errors and uncertainty.
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Introduction
We have concentrated on binding the eigenvalues of skew symmetric/Hermitian
interval matrices. It has been noticed that significantly less attention has
been given to this kind of matrices. The benefits and drawbacks of handling
these problems are discussed here.

Basic properties
The skew symmetric interval matrix Ass is defined as

Ass = {A ∈ A|A = −AT }, (1)

where A is a real interval matrix. We know that eigenvalues of a skew
symmetric matrix are either zero or purely imaginary. Thus our focus is on
the real eigenvalues of the interval matrix iAss.

There is no way to compute exact eigenvalue bounds for the complex in-
terval matrix. Therefore finding outer bounds of eigenvalues of the complex
interval matrix iAss is a good option.

The exact interval eigenvalue Λ of Ass is described as

Λ = {ib : Az = ibz, A ∈ Ass, z ̸= 0}. (2)

Main results
One bound [4] of the eigenvalues of iAss can be found by Gershgorin bound
as following,

−Σk ̸=j |ajk| ≤ λ ≤ Σk ̸=j |ajk|, (3)

for j = 1, . . . , n and Ass = (ajk), where n is the order of the matrix.
Another bound [1] for complex interval matrices can be found by the

following equation,



λn

(
O AssT

Ass O

)s

≤ λ ≤ λ1

(
O AssT

Ass O

)s

. (4)

Also, there are iterative approaches for the eigenvalue enclosure of com-
plex interval matrices [2, 3].

Purely imaginary skew Hermitian interval matrices:
Let iBs be a skew Hermitian interval matrix. Then Bs is a real symmetric
matrix. We can bound the eigenvalues for symmetric interval matrices, and
consequently, we will get eigenvalue bounds for iBs.

The eigenvalues of purely imaginary skew Hermitian interval matrices
will be zero or purely imaginary. The main distinction with skew symmetric
matrices is that eigenvalues do not occur in conjugate pairs.

Complex skew Hermitian interval matrices:
We can obtain enclosures for eigenvalue clusters of complex skew Hermi-
tian interval matrices by different methods developed for complex interval
matrices. However, we need to find the tighter enclosure of the eigenvalue
clusters for the complex skew Hermitian interval matrices.
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Introduction

This work considers the estimation of the 3D location of a target ob-
served by several cooperating Unmanned Aerial Vehicles (UAVs). The
measurement errors in the body frame of each UAV are assumed to
be bounded. Moreover, the proposed approach, accounts for the UAV
state uncertainty, assumed bounded, and for the presence of outliers.

Robust estimation

N UAVs observe a target located at xt. A measurement in the frame
of UAV i, expressed in spherical coordinates, is assumed to satisfy

yi = h
(
xu
i ,x

t
)

+ w, (1)

where xu
i is the state of the UAV only known to belong to the set

∈ Xu
i and w ∈ [w] is the bounded measurement noise. Consider a

set of indexes N ⊂ {1, . . . , N}. The estimate of all target positions
in the search domain X0, consistent the measurements yi, i ∈ N ,
the measurement model (1), the noise bounds, and the UAV state
uncertainty is

Xt
N = {x ∈ X0 |∃xi ∈ Xu

i , h (xi,x) ∈ [yi] , i ∈ N} . (2)



Combining the Thick-SIVIA algorithm [1] and the q-relaxed intersec-
tion [2], we propose the Robust Thick SIVIA (RTSIVIA) algorithm
to determine the largest sets N such that the set Xt

N is not empty.
Starting with q = 0, the corresponding set estimate is evaluated as

1. Contract X0 using i-th measurement only to get Xi, i ∈ {1, . . . , N}.

2. Use Thick SIVIA to evaluate the set

Xt
q =

q⋂
i∈{1,...N}

{x ∈ Xi |∃xi ∈ Xu
i , h (xi,x) ∈ yi − [w]} (3)

of all target locations consistent with at least N−q measurements.

3. If Xt
q = ∅, more outliers have to be tolerated: q = q + 1; Go to 2.

Results

Consider 4 UAVs getting target distance and elevation measurements
(one produces outliers). UAV’s position and attitude uncertainties are
±1m and ±2o; Measurement noise is with ±1m and ±0.5o uncertainty.

The figure shows the results of
RTSIVIA: white boxes are the
Xis; the first non-empty Xt

q is
contained in the cyan box; (a)
and (b) are the projection on
X-Y and X-Z planes of the sub-
paving approximating Xt

q
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Introduction

Area covering missions are a common task for autonomous robots,
where the robot must cover with its embedded sensors or tools a whole
area of interest. Estimating the explored area is essential for deter-
mining if path-planning algorithms lead to complete coverage. Some
applications might also require the robot to revisit an area of interest,
in this case, to verify the mission’s completion, one has to be capable
of determining how many times each part of the space has been in
the robot’s range of detection. This information can also be exploited
in localization, being directly related to the notion of loop closure, a
key concept in Simultaneous Localization and Mapping (SLAM) algo-
rithms [4].

In this paper, we propose a solution capable of determining how
many times the robot has been sensing each point in the space. Then,
using a set-membership approach, we define the explored area as a set
of points in the space that were sensed at least once. We use a novel
approach based on topological properties of the environment that has
been scanned. More precisely, we demonstrate that the computation
of certain winding numbers enables to estimate the explored area while



also determining the ”coverage measure” of each point, i.e. how many
times each point in the space was explored by the robot during its
mission.

The approach that we propose is adapted to safety-critical appli-
cations, where a guaranteed estimation of the robot’s explored area is
necessary. For this purpose, we use interval analysis to compute guar-
anteed approximations of the winding number, as briefly outlined in
next Section.

Winding number guaranteed computation

In practice, we never have exact robot localization data, so we need
to estimate winding numbers around ”imprecise” points, that are ab-
stracted using interval analysis. We propose a new method for algo-
rithmically computing the winding number [η]([f ], b) of the envelope
[f ] of a continuous function f : [0, 1] → R2 with respect to a box
b ∈ IR2.

The computation of the winding number using interval analysis is
not new, e.g [3]. One of the contributions of this work is that we
deal with what we call here uncertain boxes, estimating a guaranteed
interval for the winding number value. A box is uncertain if ∃t ∈
[0, 1] s.t. b ∩ [f ](t) ̸= ∅: only in this case the winding number is not
uniquely determined.

Main results

We propose a new approach for estimating the area explored by a
mobile robot. The use of interval analysis makes the approach adapted
to deal with uncertainties in the robot’s estimated trajectory, making
it suitable for safety-critical applications. In comparison to previous
works, e.g. [1] and [2], our method estimates how many times each
part of the space has been sensed, this is a direct result of the relation
established between the winding number and the exploration in the
plane. We demonstrated the efficiency of the proposed method using
data acquired during a real experience.
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Introduction

The maritime environment is complex and difficult to monitor. It is
quite easy for a boat to navigate furtively if it is not visible from
the shore. For instance, it is possible to practice illegal fishing in the
vastness of the ocean, even if today innovative methods are developed
to counter these practices [1]. Ocean monitoring then requires the
implementation of tools to reliably detect surface vessels that evolve
in the marine space. This can be used to detect enemy ships sailing in
unauthorized areas, but also to know the ship’s position and manage
maritime traffic.

Basic properties

The movement of the boats creates a wake that betrays their presence.
A mathematical model shows that wake’s angle is constant regardless
of the boat and is α = arcsin

(
1
3

)
≈ 19.47◦ [2], [3]. Recent studies have

established a more accurate model that takes into account the decrease
of the wake angle with increasing Froude number [4].

There are all over the world weather buoys at sea to monitor wind,
currents, temperature, and water height 1. Disturbances in water

1https://www.ndbc.noaa.gov/



height induced by sailing surface vessels can then be detected on the
weather buoys which interfere with the measurements. By combining
data from a network of buoys, the states of the boats can be estimated
(position and velocity).

Main results

This work is not focused on methods of disturbances detection on
weather buoys but assumes that the ship’s wake is detectable within
a time interval. These buoys are placed around a maritime route to
enclose the ship’s state using an accurate wake model and set inversion
algorithms [5]. It is possible to retrieve the number of boats as well
as to see their trajectories with enough buoys. The presented solution
does not rely on combinatorial complexity due to the number of sensors
but rather on efficient methods to characterize the boat’s state.
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Introduction

Intervals can be seen as a natural way to bound observation uncer-
tainty in navigation systems such as Global Navigation Satellite Sys-
tem (GNSS), Inertial Measurement Units (IMU) or optical sensors like
LiDAR, since they are in principle free of any assumption about prob-
ability distributions and can thus describe adequately remaining sys-
tematic effects [1]. Transferring the uncertainty from the observation
domain to the state domain, such as the position and pose, the uncer-
tainty is represented as a set-value, e.g., polytope [2,3], zonotope [1,3],
and interval box [4,8]. This is applicable in navigation integrity moni-
toring as an alternative approach for error bounding [5], in contrast to
the conventional stochastic handling.

The critical issue is how to determine the observation uncertainty
interval properly. Some researchers constructed intervals based on the
confidence level, which is unavoidably associated with probabilistic
distributions. In this contribution, we report methods that we have



applied in the context of GNSS range-based positioning and LiDAR
localization and show examples of uncertainty intervals due to differ-
ent error sources in GNSS signal propagation and LiDAR measuring
process.

Methodology

GNSS: The measurement result after correcting recognized system-
atic effects is still only an estimate for the measurand value because of
the uncertainty arising from random effects and imperfect correction
of the results for systematic effects [6]. Thus, the overall uncertainty
of the pseudorange observation pkr has contributions from all influence
factors di of the applied correction models and can be determined as:

[pkr , p
k
r ] =

∣∣∣∣∂pkr(d)

∂d

∣∣∣∣ · [d,d]

The absolute values of the partial derivatives are used to linearly
transfer the interval-described uncertainty of the vector of influences
parameters [d,d] into an uncertainty interval of the pseudorange. This
method is used for modeling residual tropospheric errors and residual
ionospheric errors that are two major components of the pseudorange
uncertainty.

The upper bounds of multipath error on pseudorange measurements
is typically represented by a multipath error envelope, dependent on
the signal modulation and extra path delay. In this situation, we can
construct interval values in a straight-forward way.

LiDAR: The error sources of the 3D LiDAR measurements on a
moving vehicle consist of imperfect measuring of the laser beam [7] and
the ego-motion of the sensor base. An interval error model is proposed
for 3D LiDAR to account for systematic errors like range offset, beam
divergence and beam footprint [8]. To acquire a coherent point cloud
relative to a fixed coordinate frame, the general technique is to utilize
the rotation estimation from the IMU with linear interpolation [9],



assuming continuous change in the angular velocity which yields an
interpolation error to the measurements. Thus, the interpolation error
is considered as an additional contribution to the interval:

[αt] = [αt−1] + [−δωt, δωt] · δt
Where [αt] represents the rotation angle with interval interpolation

error in either vertical or horizontal direction at current timestamp t.
δt is the time difference between two neighboring laser measurements.
δωt is the angular error rate per unit time. It can be represented by
the first-order coning error [10].
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Introduction

Uncertainty modeling and bounding are of vital importance for high-
integrity GNSS applications. All contributing observation and system
errors should be adequately assessed to ensure safety operations of
navigation. Classical approaches are mostly developed in a stochastic
manner with probabilistic assumptions. However, the exact error dis-
tribution is often unknown, and remaining systematics may persist, so
that a purely stochastic modeling of all error sources will not be ad-
equate, and alternative uncertainty bounding and propagation should
be studied. Intervals and sets, i.e., zonotope and polytopes, can be
seen as natural ways to represent unknown-but-bounded uncertainty.
They are not linked with any probabilistic assumptions, therefore, are
deterministic [1,3]. Subsequently, a linear uncertainty propagation is
applied instead of the quadratic variance propagation.

In this contribution, we report the interval and set-based uncer-
tainty methods that we have applied in the context of GNSS range-
based positioning and discuss its feasibility in future integrity applica-
tions.
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Introduction

Global localization in large maps in the absence of GPS data is one of
the key challenges that need to be solved in the context of autonomous
driving. In particular urban canyons make global positioning using
such systems very challenging. As a result, local sensory needs to be
used to localize the robot on a map. Our goal is to localize the robot in
an arbitrary building map. A building map may have repetitive sym-
metrical structures due to which the localization may be ambiguous.
A prominent solution to this problem is the Monte Carlo Localization
(MCL) [1,2]. However, the major drawback of MCL approaches is that
the quality of the solution heavily depends on the number of samples.
If the uncertainty is very large, a large number of particles may be
required to cover the solution space and therefore can become compu-
tationally heavy. Further, due to random sampling of the particles, an
unfortunate sequence of samples can cause a wrong convergence of the
method.
We introduce a novel global localization method using intervals that
copes with ambiguous localization and overcomes the aforementioned



problems. We assume (i) that we know the building map of the envi-
ronment in which the robot is moving, (ii) that the robot can never be
inside a building, and in the scope of this abstract (iii) that the orien-
tation of the robot is known (from a compass for instance). Exploiting
the assumptions and by only using the robot’s odometry information,
our method can narrow down the feasible set of poses of the vehicle
along the trajectory without using any exteroceptive sensors such as
laser scanners. Desrochers and Jaulin [3] solve a similar problem to
ours, but with the major difference, that they use sonar range mea-
surements and restrict the local measurements to always see parts of
the map. In contrast to probabilistic approaches as [1,2], our method
does not need an association step of local sensor data to the map which
is often error-prone. As a result, our method maintains integrity. On
the downside, our approach cannot provide as accurate results as clas-
sical methods do. Nonetheless, we believe that our approach can be
used to effectively reduce the search space for other methods and to
find inconsistencies in the used map.

Method

In the 2D case, the pose consists of two translation and one orienta-
tion parameter. According to assumption (iii) the orientation angle is
known. Hence, the global localization problem simplifies to determin-
ing the translation. As the initial position is unknown, according to
assumption (i) the robot can be placed everywhere on the map. As-
sumption (ii) reveals, that the robot cannot be placed within buildings.
That means, the position of the robot can be described by a set of posi-
tions on the map, that has an empty intersection with the buildings de-
scribed by polygons. The set of feasible robot positions is represented
by subpavings. When the robot moves, the subpavings are updated
according to the measured odometry. Those updated subpavings that
lie within a building polygon are discarded from the feasible set of po-
sitions. Subpavings that intersect but do not fully lie within a building
polygon are further bisected and evaluated in a SIVIA approach. Fig. 1
illustrates our method.



(a) (b)
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(e) (f)

Figure 1: Global Localization on the KITTI 0027 dataset [4].

First results

We experimetally evaluate our method with the KITTI 0027 dataset [4].
Fig. 1a shows the building map of a part of Karlsruhe, Germany. The
trajectory is marked red. The ground truth pose of the robot is rep-
resented by the green-red coordinate frame. The feasible set of robot
positions is visualized in Fig. 1b to 1f in green. Initially, the robot can
be everywhere on the map besides within the buildings as shown in
Fig. 1b. In Fig. 1c the vehicle has driven forward and the buildings



enable us to carve out infeasible positions of the vehicle. From Fig. 1b
to 1f the feasible position set is gradually narrowed down along the
trajectory. In Fig. 1e multiple disconnected regions for the position
remain. In Fig. 1f the robot is localized unambiguously at the end of
the trajectory.
In future work, we plan to extend our method in such a way that we can
withdraw assumption (iii) by also estimating the orientation. There-
fore, we divide the initial orientation interval into multiple subpavings
and apply our method to each of them. Those initial orientation sub-
pavings that lead to empty sets for the feasible set of positions can be
discarded and the initial orientation can be narrowed down by exclu-
sion.

Acknowledgement

This work was supported by the German Research Foundation (DFG)
as part of the Research Training Group i.c.sens [RTG 2159].

References

[1] M. Hentschel and W. Wagner, Autonomous robot navigation
based on OpenStreetMap geodata, International IEEE Conference
on Intelligent Transportation Systems, pp. 1645–1650, 2010.

[2] P. Ruchti, B. Steder, M. Ruhnke, and W. Burgard, Lo-
calization on OpenStreetMap data using a 3D laser scanner, IEEE
International Conference on Robotics and Automation, pp. 5260-
5265, 2015.

[3] B. Desrochers and L. Jaulin, Minkowski Operations of Sets
with Application to Robot Localization, Electronic Proceedings in
Theoretical Computer Science, vol. 247, pp. 34–45, 2017.

[4] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, Vision
meets robotics: The KITTI dataset, The International Journal of
Robotics Research, vol. 10, no. 11, pp. 1231–1237, 2013.



High-gain interval observer for
continuous-discrete time systems :

Application to a quadcopter

Antoine Hugo1, Rihab El Houda Thabet 1, Luc Meyer2,
Sofiane Ahmed Ali1, Hélène Piet-Lahanier2 and Felipe

Kataoka Ishikawa1
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Introduction

State estimation is a key challenge concerning control and fault de-
tection of complex uncertain systems. Interval observer design is a
promising way to tackle this issue in the context of bounded uncer-
tainties [1,2]. This work focuses on continuous-discrete interval ob-
server design for a class of partially linear systems subject to sampled
data measurements. The proposed approach is an extension of [3].
The observer structure is based upon a discretization of their resulting
observer. A sufficient condition on the maximum allowable sampling
period is derived in order to ensure the observer stability. The aim is
to deal with the implementation issue on a real system. Results will
be tested on the Navigation-Guidance-Control loop of a quadcopter.



Main results

The High-Gain Interval Observer (HGIO) design presented in [3] con-
sists in four main steps. The first two are offline computation of the
associated gains and parameters. The last two are online, based on
the proposed observers, to compute the estimated bounds of the out-
put and the state. In this work, the resulting observer for state bounds
estimation has been discretized at a sampling period Td by a 3rd order
polynomial method. Indeed, this choice allows to work with higher
sampling periods than those of the rectangular method.
As a first result, a sufficient implicit condition on the sampling period
for the observer stability has been proven based on the non-divergence
of the radius dynamics. It consists in checking that a Metzler matrix
is Hurwitz. Later, an explicit condition will be given to derive the
maximum allowable sampling period. Moreover, as the measurement
sampling period has to be lower than Td, this condition also defines
the maximum measurement sampling period.
The implementation of the HGIO for a quadcopter will be initially
conducted in Hardware In The Loop (HITL) simulation with a Pix-
hawk 4. Later it will be tested on an experimental plateform in real
conditions through outdoor experiments.
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Introduction

Linear Matrix Inequalities (LMIs) have recently gained a momentum
due to the increasing performance of computing hardware. Many cur-
rent research activities rely on the advantages of this growth in order
to design linear state feedback controllers with provable stability and
performance guarantees. As an example, the authors of the paper [1]
have established an approach based on an iterative LMI solution to
obtain the gain matrices of robust controllers and state observers si-
multaneously in the presence of bounded parameter uncertainty and
stochastic noise.

On the basis of the aforementioned work, this presentation discusses
possible paths to follow in order to reduce the dependency effect and
the wrapping effect that may turn the control and observer synthesis
pessimistic.

Control Loop Structure

Consider the cascaded structure of a quadrotor control as it has been
proposed in the paper [2]. The state-dependent model for the inner
attitude control loop from this paper has firstly been reformulated in



terms of a quasi-linear state-space representation by a suitable factor-
ization of the state equations. Defining bounded intervals for the state
vector components that are included in the system matrices, a poly-
topic realization can be constructed. Hence, an observer-based state
feedback control approach can be implemented, after temporal dis-
cretization of the continuous-time state equations, with the structure
depicted in Fig. 1.

Figure 1: Block diagram of the discrete-time observer-based state feed-
back control system.

In this graphical representation ϕ, θ, ψ are respectively the roll,
pitch, and yaw angles, while ωd represents disturbances caused by cou-
plings with the outer velocity and position control loops that are not
further considered in this contribution; JR is the rotor inertia while
Ix, Iy, Iz are the parameters on the diagonal of the inertia matrix.
The blocks C1 and O1 are respectively the controller and the state ob-
server. The command signals u2, u3, and u4 are the rolling, pitching,
and yawing torque, respectively, which depend on the speed of each
rotor.

Preliminary Results and Ongoing Work

Using the proposed approach, it is possible to find controller and ob-
server gains jointly for which stability can be proven despite state and



parameter uncertainties with eigenvalue domains strictly included in
the interior of the unit circle in the complex z-plane. The response for
a desired hovering state is shown in the Fig. 2, where the initial states
are fixed at 10°. The resulting control signals are reasonable in their
amplitudes and setting times as shown in Fig. 3.
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Figure 2: Regulation of the quadrotor’s attitude.

So far, the decay rates of the state vector components towards the
equilibrium state are restricted by the use of the polytopic uncertainty
model in combination with a parameter-independent Lyapunov func-
tion approach. In such cases, infeasibility of the LMIs may occur if
excessively large distances of the eigenvalues from the boundary of the
unit circle are desired.

To overcome this problem, the authors in the cited paper [3] have
provided a tool, on the basis of the theorem of Ehlich and Zeller,
that provides the possibility to balance between conservatism and the
calculation effort. Therefore, ongoing research focuses on combining
this method with the algorithm presented in [1] to obtain the gain
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Figure 3: Command Signals applied to the attitude model.

matrices of the controller and the observer with less conservatism and
a moderate computational effort.
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Introduction

Guaranteed numerical integration is a fundamental tool to solve ini-
tial value problems of ordinary differential equations (IVP-ODEs) with
uncertain initial conditions and parameters in a reliable and validated
way. Providing guaranteed solution enclosures to these IVP-ODEs
is essential for designing and verifying linear and nonlinear feedback
controllers, mainly for predictive control approaches. In the litera-
ture, many solvers have been developed, such as the DynIbex library,
allowing for the computation of enclosures which are guaranteed to
contain all possible system states. The DynIbex library is based on
Runge-Kutta schemes to obtain tight state enclosures [1]. Neverthe-
less, it has been shown that — due to the computational complexity
of Runge-Kutta methods [2] — fast convergence and high accuracy of
the computed enclosures are not always guaranteed for finitely long
integration time spans, possibly leading to an excessive duration to
get the IVP-ODEs’ solutions. To overcome these issues, exponential
enclosure techniques for IVP-ODE problems seem to be attractive to
remarkably reduce the computing time of validated methods and to
approach real-time capability [3,4].



The time aspect is especially crucial, because at each sampling in-
stant, a validated nonlinear model predictive controller (NMPC) needs
to compute optimal and guaranteed system inputs along a receding
horizon that minimize some interval cost function and ensure compati-
bility constraints (such as actuator saturations or safety constraints on
the state trajectories) [2]. Our motivation is to interface exponential
enclosure techniques with the validated NMPC to remarkably speed
up the solution.

Guaranteed Nonlinear Model Predictive Control

Consider a dynamic system defined by the following IVP-ODEs :
ẋt = f(t,xt,u,p)
x0 ∈ [x0] ⊆ IRn

u ∈ [u] ⊆ IRm

p ∈ [p] ⊆ IRp,

(1)

where the state vector is denoted by xt, the vector of parameters by

p, and the control vector by u. The sets [x0] =
[
[x10] . . . [xn0]

]T
,

[u] =
[
[u1] . . . [um]

]T
, and [p] =

[
[p1] . . . [pp]

]T
, expressed as inter-

val boxes, are respectively the initial condition of the state vector, the
interval-bounded input, and the set of feasible dynamic parameters.
The proposed guaranteed NMPC encompasses two stages [2]:

1. Filtering and branching: The first step provides a sequence of
guaranteed input interval boxes at each time-step k over the pre-
diction horizon Np, denoted as [U]k = [u]k×[u]k+1×. . .×[u]k+Np−1.
Branching and filtering procedures allow the computation of safe
input intervals along the receding time horizon that satisfy the
state constraints (i.e., ∀j, [xj] ⊆ [xmin,j, xmax,j], where xmin,j and
xmax,j are the bounds for the admissible domain for each state
variable) and ensure convergence to the reference interval (i.e.,
[xk] → [xr,k]).

2. Interval optimization: Since safe inputs are computed over a
finite time horizon, the optimization algorithm is launched to com-



pute the optimal inputs [U]⋆k by minimizing as much as as possible
a newly formulated interval objective function to reduce the error
between predicted and reference outputs as well as the norm of the
input intervals.

Exponential Enclosure Technique

Guaranteed numerical integration methods aim at computing the state
enclosure sequences (tj, [xj])j∈N, assuming that the input and param-
eter boxes [u] and [p], respectively, are piecewise constant and known
for each validated simulation. Here, the exponential enclosure tech-
nique will be applied to approximate the IVP-ODEs’ solutions, given
in (1). It has been shown that this method improves the accuracy of
the computed state enclosures and reduces the required computation
time for asymptotically stable systems [3]. The dynamic model (1) can
be reformulated by considering that the dynamic parameters are rep-
resented by constant intervals, and the input variables are assumed to

be included in an augmented state vector, i.e.,
[
xT
t uT (xt)

]T
, denoted

for brevity again as xt with

ẋt = f(xt). (2)

To ensure the (local) asymptotic stability of the system model in the
neighborhood of a desired terminal state, we assume — as a prereq-
uisite for the exponential enclosure approach — that a feedback con-
troller is included in a cascaded manner in the control law u(xt) so that
the NMPC effectively computes a kind of feedforward control sequence.

To prevent the growth of the diameters of the intervals (tj, [xj])j∈N
for asymptotically stable systems with a minimum computational ca-
pacity, the exact solution x⋆

t can be bracketed into the following expo-
nential state enclosures

x⋆
t ∈ [xe](t) = exp

(
[Λ] · t

)
· [xe](0) , [xe](0) = [x0], (3)

where Λ represents a yet unknown dynamics matrix. By choosing
[Λ] = diag{[λi]}, i = 1, . . . , n, as a diagonal matrix, its elements λi



need to have negative real parts to describe contracting state enclo-
sures.

Using the exponential state enclosures (3) and a Picard iteration
with the iteration index κ, we obtain

x⋆
t ∈ [xe](κ+1)

= exp
(
[Λ]

(κ+1)
· t
)
· [xe](0)

= [xe](0) +

t∫
0

f
(
exp

(
[Λ]

(κ)
· s
)
· [xe](0)

)
ds.

(4)

The differentiation of (4) with respect to time, belonging to the inte-
gration interval t ∈ [t], leads to

ẋ⋆
[t] ∈ [Λ]

(κ+1)
· exp

(
[Λ]

(κ+1)
· [t]

)
· [xe](0) = f

(
exp

(
[Λ]

(κ)
· [t]

)
· [xe](0)

)
.

(5)

Assuming a converging iteration with [Λ]
(κ+1)

⊆ [Λ]
(κ)

and, thus, [λi](κ+1)
⊆

[λi](κ), the iteration formula for [λi](κ+1)
can be expressed as

[λi](κ+1)
=

fi

(
exp

(
[Λ]

(κ)
· [t]

)
· [xe,i](0)

)
exp

(
[Λ]

(κ)
· [t]

)
.[xe,i](0)

, i = 1, . . . , n. (6)

The guaranteed state enclosure at the time instant t = T = sup([t]) is
given by

x⋆
t ∈ [xe](t) = exp

(
[Λ] · T

)
· [xe](0), (7)

where [Λ] is the final result of the iteration (6).

Preliminary Results using DynIbex

The NMPC strategy is applied to stabilize a nonlinear inverted pen-
dulum with two serial joints, actuated by a DC motor whose angular
speed is the input variable. To evaluate the dynamic model of the



inverted pendulum, we can solve the IVP-ODEs in a validated way
using the DynIbex library. Figs. 1a and 1b show the measured pen-
dulum angle (black lines) with the computed enclosures by DynIbex
using point-valued parameters p (red enclosures) and interval param-
eters [p] (blue enclosures). We can notice that the simulated tubes of
the pendulum angle are close to the real measured signal. Moreover,
we have calculated the coverage ratios between the measurements and
the simulated tubes as recapped in Tab. 1. The coverage ratios con-
firm that the model is identified with high precision when the dynamic
parameters are considered as intervals that account for different uncer-
tainties related to the measurements and dynamic modeling. However,
the accuracy of the validated simulation should be enhanced because
the widths of the computed Rung-Kutta enclosures enlarge with time,
and the coverage ratios are not quite satisfactory.

(a) Initial conditions: [u0] =
[0Nm, 0Nm] and [x0] =
[0◦, 0◦]︸ ︷︷ ︸
[x10]

× [0, 0]︸︷︷︸
[x20]

× [−98◦,−100◦]︸ ︷︷ ︸
[x30]

× [0, 0]︸︷︷︸
[x40]

.

(b) Initial conditions: [u0] =
[0.15Nm, 0.18Nm] and [x0] =
[0◦, 0◦]︸ ︷︷ ︸
[x10]

× [0, 0]︸︷︷︸
[x20]

× [46◦, 50◦]︸ ︷︷ ︸
[x30]

× [0, 0]︸︷︷︸
[x40]

.

Figure 1: The validation of the dynamic model of a nonlinear inverted
pendulum using the DynIbex library. Comparison between the ac-
tual and simulated pendulum angles at different initial conditions with
point-valued and interval parameters.

Figs. 2a and 2b display the simulation results of the validated
NMPC approach. As it can be seen in Fig. 2a, the pendulum arm
starts from the downward position, and it is stabilized via the vali-



Table 1: Coverage rates between the model and physical reality.

Scenario (a) (b)
With interval-valued dynamic parameters [p] 51% 61%
With point-valued dynamic parameters p 38% 34%

dated NMPC in its vertical upright position interval [xr] with a small
settling-time (around tr5% ≈ 0.18 s). Despite its proven effectiveness in
making the system output converge to the desired reference interval,
it still has some drawbacks. The main ones are related globally to the
computation time, which depends mainly on a large number of bisec-
tions of the initial input domain [uk] preventing the validation of this
approach in real-time. This issue can be reduced by using exponen-
tial enclosure techniques in combination with an underlying feedback
controller.

(a) Tube for the pendulum angle. (b) Input Intervals.

Figure 2: Validated NMPC results starting from the downward posi-
tion.
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